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Abstract. Context-aware computing, an emerging paradigm in which
applications sense and adapt their behavior to changes in their opera-
tional environment, is key to developing dependable agent-based soft-
ware systems for use in the often unpredictable settings of ad hoc net-
works. However, designing an application agent which interacts with
other agents to gather, maintain, and adapt to context can be a dif-
ficult undertaking in an open and continuously changing environment,
even for a seasoned programmer. Our goal is to simplify the programming
task by hiding the details of agent coordination from the programmer,
allowing one to quickly and reliably produce a context-aware application
agent for use in large-scale ad hoc networks. With this goal in mind,
we introduce a novel abstraction called context-sensitive data structures
(CSDS). The programmer interacts with the CSDS through a familiar
programming interface, without direct knowledge of the context gather-
ing and maintenance tasks that occur behind the scenes. In this paper,
we define a model of context-sensitive data structures, and we identify
key requirements and issues associated with building an infrastructure
to support the development of context-sensitive data structures.

1 Introduction

In recent years, communication technology has begun to reflect the dynamic na-
ture of society, with devices becoming increasingly portable and untethered. The
widespread use of mobile devices brings about an increased demand for software
designed with mobility in mind. In fact, we can expect the number of software
systems designed for use in ad hoc networks to experience rapid growth. In such
networks, connections are formed opportunistically between devices within wire-
less communication range. Applications for this environment are likely to come
into routine usage in situations such as disaster recovery in which rescue workers
must find and treat victims, construction supervision in which a foreman gathers
information around a site to gauge progress, etc. These and other applications
for ad hoc networks are often composed from several application agents that
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must operate in open and highly dynamic environments characterized by unpre-
dictable and transient interactions, making it difficult for the agent programmer
to produce reliable and dependable software.

Context-aware computing has been advocated as a solution for managing
the programming complexity associated with such development efforts. Context-
awareness refers to the ability of a software system to adapt its behavior in
response to environmental changes. Typical examples of context-aware systems
include location-aware offices (e.g., Active Badge [?] and PARCTAb [?]), context-
sensitive tour guides (e.g., Cyberguide [?] and GUIDE [?]), and context-aware
note tools (e.g., FieldNote [?]). Constructing such systems is a daunting task,
requiring the developer to consider the interaction between the system and a
number of possibly heterogeneous sensors to gather and deliver context informa-
tion.

Several frameworks and infrastructures have been devised to promote effi-
cient, reliable development of context-aware applications by masking the com-
plexity of interacting with heterogeneous sensors, e.g., the Context Toolkit [?]
and the Context Fabric [?]. While these support systems simplify interactions
with sensors, the programmer must still know the source of data to access and
operate on it. In an ad hoc network, the open and dynamic nature of the envi-
ronment makes it unreasonable to assume advance knowledge of the identities
of data sources; application agents for use in such scenarios require a highly
decoupled method of data access. Mobile agent middleware systems have been
introduced that provide decoupled communication in ad hoc networks, includ-
ing LIME [?], Limone [?], and EgoSpaces [?]. Many of these systems, however,
are tied to the tuple space data abstraction, requiring the agent programmer
to use tuple spaces as the core data abstraction in order to reap the benefits
of simplified, decoupled agent communication and coordination offered by the
middleware.

To provide a more general and flexible method of simplified and decoupled
data access for agents operating in an ad hoc network, we propose the concept
of context-sensitive data structures as the basis for a new programming method-
ology. A context-sensitive data structure (CSDS) is determined by and provides
an agent with access to data available in the context; it is encapsulated as an
abstract data type (ADT), which is represented by a class in a programming
language such as Java or C++. Like all classes, it provides the agent program-
mer with an application programming interface (API) to access and manipulate
data. The collection of data items operated on by an instantiation of such a class
changes with the content of the ad hoc network. The distributed data items are
accessed using the API of the local class instantiation.

The resulting design methodology provides the designer with the flexibility
to use familiar and proven programming tools, i.e., ADTs, for context-aware ap-
plication development. The programming tasks associated with gathering, main-
taining, and adapting to context are simplified for the developer, which allows
the focus to be shifted to satisfying domain-specific requirements. While imple-
mentations of context-sensitive data structures may be useful to the burgeoning



community of context-aware application developers, requiring programmers to
construct an entire library of these data structures from scratch is impracti-
cal. Our goal is to provide a general model and infrastructure to support the
gradual development of a library of context-sensitive data structures, which can,
in turn, be used to support the context-sensitive data structures programming
methodology. In this paper, we lay the conceptual foundation required to sup-
port the methodology by defining the context-sensitive data structures model
and by exploring the needs of CSDS developers.

The remainder of this paper is organized as follows. Section 2 summarizes
the computational model and the notion of context assumed in this paper. A
motivating example of a CSDS and its use in developing a context-aware appli-
cation agent is given in Section 3. Section 4 addresses the key elements required
in an infrastructure for supporting the development of context-sensitive versions
of traditional data structures and discusses issues with developing protocols for
inclusion in the infrastructure. A brief comparison with related work is given
in Section 5. The merits of the CSDS approach are discussed in Section 6, and
conclusions appear in Section 7.

2 Context-Sensitive Data Structures Explained

As we embark on an exploration of the context-sensitive data structures model,
we should be more specific about the environment in which an application op-
erates. We consider agents as the main computational entities of a system, as
well as providers and users of data items. To put it simply, agents are pieces of
code that make up an application; each agent has its own thread of execution.
Pieces of data generated by an agent are context items; context items have a
general representation and can capture a wide range of information that may
be important to an application, e.g., sensor readings, location information, etc.
Runtime support for agents is provided by devices, which simply serve as con-
tainers for agents; we often refer to such devices as hosts. Hosts perform no
application execution and do not provide or use data. An agent may be mobile,
i.e., it can migrate between connected hosts. Hosts are connected when they are
within wireless communication range, and agents are connected when they reside
on the same host or on connected hosts. This definition of agent connectivity is
important in our definition of an agent’s context. In the systems that we con-
sider, each agent is associated with an individual context; an agent’s maximal
context consists of context items provided by connected agents. An agent can be
context-aware, meaning that it can sense changes in its context and adapt its
behavior in response.

Context-sensitive data structures are an appropriate abstraction for access-
ing and operating on the data available in a context-aware agent’s context, and
their use can greatly simplify agent interaction and collaboration. In the CSDS
methodology, agent interaction occurs through the provision and acquisition of
available context items. Rather than requiring an agent to collect context items
from a number of agents spanning an ad hoc network or provide a context



item to a particular agent, the CSDS methodology supports a more decoupled
style of agent interaction. With our approach, an agent declares and instanti-
ates a context-sensitive data structure. The content of the context-sensitive data
structure is determined by the agent’s associated context. Given that an agent’s
maximal context can span an entire large scale multi-agent system, the context
can grow quite large and unmanageable. As pointed out in [?], one way to allow
a context-aware agent to economically manage its context is to supply the agent
with a more limited context that is tailored to its needs. In the context-sensitive
data structures programming methodology, an agent can provide a tailored con-
text definition in the instantiation of a CSDS, essentially specifying the desired
context for the data structure to operate over.

When a context-sensitive data structure is used by an agent, the task of
managing access to the data elements that are spread across the ad hoc network
while maintaing a specific data organization defined by the structure is hidden
from the application programmer. Access to the data elements of the CSDS is
gained only through operations defined on its ADT. Operations performed on
the CSDS can effect a change in the context of others, as can the movement of an
agent that may cause it to join or leave another agent’s context. As these changes
in the state of the environment occur, the content of the context-sensitive data
structure is changed appropriately in response. A developer using a context-
sensitive data structure can operate on the dynamically changing set of data
elements that are distributed throughout the context as if the data were stored
in a local, persistent data structure. The management of the data elements within
the CSDS is automatically handled in the face of changes without intervention
by the application programmer, since the data structure is essentially a reflection
of context.

In the remainder of this paper, we investigate the software engineering poten-
tial for context-sensitive data structures. First, we offer a concrete example of a
context-aware application that can benefit from the use of a particular context-
sensitive data structure, the priority queue. We then explore protocols we must
provide in the infrastructure to support the development of context-sensitive
data structures for use in such applications. In doing so, we seek to demon-
strate the feasibility of applying the context-sensitive data structures concept
and associated design methodology.

3 Programming with Context-Sensitive Data Structures

The impetus behind the introduction of the context-sensitive data structure de-
sign methodology is to reduce development costs in terms of effort and errors,
and to make context-aware application development accessible even to novice
programmers. Context-sensitive data structures provide a decoupled method of
accessing and operating on data in the ad hoc network, one that is simple and
natural to the programmer, using the same interface as in static settings. More-
over, the dynamically changing content is managed transparently, reducing the
complexity of the environment, and, in turn, the potential for programming er-



rors incurred by interacting with agents in a large-scale and highly dynamic ad
hoc network. Finally, the context-sensitive data structures design methodology
offers a flexible approach to software development for ad hoc networks, and gives
the agent programmer the freedom to choose the data abstraction that is best
suited for task at hand.

In the remainder of this section, we use an example to demonstrate the utility
of context-sensitive data structures and the associated design methodology. The
example highlights how the CSDS methodology can be applied and how a partic-
ular instance of a context-sensitive data structure can be used in an application
scenario.

We consider a disaster recovery scenario in which triage is employed to treat
the wounded. Victims are quickly examined to evaluate the seriousness of their
injuries and are tagged with devices that emit (via wireless radio or infrared)
information about the assigned injury classification, ranging from injuries that
need immediate attention to those for which treatment can be postponed. Rescue
teams are assigned areas in which they must arrange transport for the most
severely injured first and provide as much on-site treatment as possible for these
victims until transport is available. The rescue team members use PDAs with
wireless communication capabilities to coordinate activites and to obtain and
display the status of victims and volunteers. A volunteer is selected by the rescue
team member to treat the most seriously wounded victim until transport arrives.
A volunteer’s assignment may change as the status of injured victims within the
context changes. After a rescue crew member arranges on-site treatment for a
victim, he must arrange for the victim’s transport to a hospital. As victims
are transported, they are removed from the context of the application. As new
victims are discovered and their injuries evaluated, they are added to the context.
Figure ?? illustrates this application.

Fig. 1. Disaster Recovery Scenario. The disaster site lies within the large oval. A rescue
crew member (the encircled cross) uses a PDA that runs an application to assign to
the most seriously wounded victims in the designated area (the dashed box) on-site
treatement and ambulance transport to a nearby hospital. Victims are shown as circles,
with seriousness of injury reflected by darker shading.

Building the application described from scratch can be a significant under-
taking. The programmer must include functions to sense the set of neighboring
hosts, to send messages to agents on reachable hosts, and to issue queries to
obtain data. Given the intended pattern of data access in this particular appli-
cation, the use of a priority queue data structure seems like the most intuitive
way to represent data. Therefore, query responses must be processed and placed
into a traditional, static priority queue. Each and every time an operation is
requested, the hosts in the network must be queried to ensure operation over
a set of data most closely reflecting the current state of the context, and the



replies must be processed to ensure an appropriate presentation of the resulting
data. In this particular example, such processing requires proper insertion of the
resulting data elements in the traditional priority queue data structure. The re-
mainder of this section illustrates a CSDS approach to implementing the disaster
recovery application and demonstrates how context-sensitive ADTs can be used
by application programmers to reduce the complexity of context maintenance
duties associated with context-aware programming.

A context-sensitive data structure is captured as a class implemented in a
programming language. An agent’s instantiation of a CSDS, at any instant in
time, encapsulates the data items available in the agent’s context. To be more
specific, the content of the context-sensitive data structure is defined by a con-
text specification provided by the agent programmer. The context specification
gives rules on what kinds of context information should be provided to the agent
in order to restrict the agent’s context to a manageable size. The CSDS places
a logical ordering over the data items within the restricted context to mimic the
organization of its traditional data structure counterpart, even as the data items
are constantly changing due to changes in the context. Access to the changing
collection of data items is gained only through the CSDS API, which includes
data access and manipulation operations similar to those provided for traditional
data structures. When using the CSDS programming methodology, the amount
of data processed by the application agent is reduced, explicit data maintenance
by the application programmer is removed, and application development is sim-
plified.

A simple application agent for rescue team support could be constructed
around the notion of a context-sensitive data structure. While several different
context-sensitive data structures could be employed, based on the pattern of data
access recognizable in the disaster recovery scenario, we use a context-sensitive
priority queue as a motivating example.

In the disaster recovery example that we consider, the agent provides a con-
text specification with the context-sensitive priority queue instantiation that
restricts the context items eligible for inclusion in the priority queue to those
that lie within a limited area of the disaster site, e.g., a one block radius. The
context definition restricts which elements of the entire operational environment
will be included as items in the priority queue. Data elements of the priority
queue used in the triage application are pieces of injury information emitted
from victims’ triage tags. Given the above context specification, the content of
the priority queue for a crew member’s application is the injury information data
elements that are located within her assigned area. The data associated with the
context-sensitive priority queue reflects an ordering over the injured within that
area such that the most seriously injured victim is at the head of the queue.
The context, and hence the content of the context-sensitive priority queue, is
updated independently of the application’s operation on the queue. No context
management gathering or maintanence is explicitly performed by the agent that
instantiates a context-sensitive data structure; in this example, the burden of



context maintenance duties falls on the context-sensitive ADT implementation
of the priority queue.

In this example, our context-sensitive priority queue requires two operations:
getFirst() and removeFirst(). In our application, getFirst() is used to ac-
cess an injury description for the victim in the context with the most severe
injury. The injury description includes a unique injury identifier, the injury pri-
ority, and the geographical location of the injured person. The removeFirst()
operation is used to access the injury description of the victim with the high-
est priority injury and to remove the injury description from consideration of
all medics that schedule transport. The victim’s information is still made avail-
able to ambulance drivers. This type of removal can be accomplished simply by
changing the context item containing the injury status of a victim such that it
is no longer included in priority queues of medics, but is still included in the
context-sensitive data structures used by ambulance drivers.

It may seem that we have omitted operations needed to populate a priority
queue. While explicit data insertion operations may be needed in other appli-
cations, none are needed for this scenario. Data elements become available as a
result of the introduction of devices that emit injury information, and are in-
cluded in a rescue crew member’s application as a result of context-maintenance
performed to uphold the provided context definition. (It is important to note
that while the application presented here requires only implicit insertion of data
items by the infrastructure, the general context-sensitive data structures model
is not limited to this type of insertion. A discussion of issues related to supporting
insertion operations is presented in Section 4.)

In the disaster recovery application, the context-sensitive priority queue con-
sists of the victims in the context ordered by injury priority. The rescue crew
member uses the application to get the head of the priority queue, dispatching
a volunteer to tend to the victim until transport can be arranged. Because we
consider that crew members may be assigned overlapping contexts and that the
transport vehicles available to one crew member may not be available to another,
the injury description obtained to dispatch treatment should still be made avail-
able. For this reason, the dispatch function of the application is implemented
using the getFirst() operation previously described. Once treatment has been
dispatched to the most severely wounded victim, the crew member uses the ap-
plication on his PDA to determine if any transportation resources are available.
If so, the application assigns the available transportation resources to the most
severely injured victim in the context. Because the victim has been assigned
on-site treatment and scheduled for evacuation, the victim should be removed
from consideration by the rescue crew teams. Therefore, transport scheduling in
the application should be implemented using the removeFirst() operation.

Figure ?? shows sample code for a straightforward Java-based implementa-
tion of the disaster recovery application using a context-sensitive priority queue.
This version of the agent simply defines a context, instantiates the context-
sensitive priority queue, and performs processing on the priority queue using the
operations made available by the API, e.g., getFirst() and removeFirst().



public class DisasterRecoveryAgent extends Thread {

public DisasterRecoveryAgent()

Context context = one block radius
PriorityQueue pq = new PriorityQueue(context);

public void run()

while(victimsUntreated())

if(volunteersAvailable())

TreatmentThread treat = new TreatmentThread(pq);

treat.start();

if(transportAvailable())

TransportThread transport = new TransportThread(pq);

transport.start();

class TreatmentThread extends Thread

the start method calls the run method...
public void run()

dispatch(getVolunteer(), (pq.getFirst()).id);

class TransportThread extends Thread

the start method calls the run method...
public void run()

assign(getTransport(), (pq.removeFirst()).id);

}

Fig. 2. A CSDS Approach to the Disaster Recovery Application

The data structure does not have to be explicitly reconfigured by the appli-
cation each time a victim is transported. Instead, an untreated victim in the
context with the highest injury priority can be identified simply by using the
getFirst() operation.

This example is suggestive of the programming productivity gains one could
achieve with context-sensitive data structures. A variety of context-aware ap-
plications can benefit from the use of a number of other context-sensitive data
structures as well. Providing a library of context-sensitive data structures, how-
ever, requires a demanding and time-consuming process. In the next section, we
explore what is needed to support the implementation of context-sensitive data
structures such as the priority queue used in the disaster recovery application.

4 CSDS Infrastructure Support

We envision the gradual development of a library of context-sensitive data struc-
tures for use by context-aware application programmers. In most cases, the ap-
plication programmer should not have to implement the context-sensitive data



structure; she should simply choose among the available CSDS implementations.
The application programmer is expected to use the API of the selected CSDS to
interact with data as if it were local. Since many data structures share common
operations, we envision providing an infrastructure that supports the develop-
ment of context-sensitive lists, trees, stacks, queues, and other data structures.

At the heart of the CSDS model is the perception that we are populating a
locally accessible structure with data items distributed throughout the associated
agent’s context, keeping the items in the local view consistent with the context
as the environment changes. In reality, we are building a structure on top of
the ad hoc network—a structure which mimics the organization imposed by a
particular data structure. This overlay structure is used to support operations
issued on a CSDS. As such, the structure must adapt accordingly in response to
context changes.

To deliver a CSDS support infrastructure, we must explore what is required
to build and maintain an overlay structure over the ad hoc network. To begin,
we consider that the environment in which agents operate is open and dynamic.
As the number of hosts that join the network grows, the number of context
items available to an application agent significantly increases. Building an over-
lay structure to support the operation of an agent’s CSDS over a large body
of context items requires a substantial amount of processing. To aid in the de-
velopment of efficient context-sensitive data structures, the infrastructure must
contain protocols for limiting the scope of the context to include only those items
that suit an agent’s particular needs. The tailored context delivered as a result
will be used by other protocols required in our infrastructure: those for support-
ing the implementation of particular operations on a CSDS. In the remainder
of this section, we explore design issues associated with context scoping proto-
cols and examine the effects of various CSDS operations on the development of
protocols for building and maintaining overlay structures for ad hoc networks.

Before we begin this exploration, we remind the reader that our ultimate
goal is to provide a general support infrastructure containing a set of proto-
cols that can be used to aid others in the development of an entire library of
context-sensitive data structures to be used by agent developers following the
CSDS development methodology. As such, the discussion of data structures and
their operations is generalized for dynamic set data structures. Inspiration for
the generalized descriptions of data structure population, access, and removal
operations is taken from [?].

4.1 Protocols for Tailored Contexts

There are several viable approaches to limiting the reach of an agent’s context.
We utilize a policy-based approach similar to that in the network abstractions
protocol [?] in which a context-scoping policy is used to determine an agent’s
context. In our approach, a context-scoping policy is associated with a particular
CSDS. The policy is used to govern which context items in the ad hoc network
are eligible for inclusion in the CSDS. An application programmer can specify



the context associated with a CSDS by providing a context-scoping policy as
part of the data structure’s instantiation.

Each policy is defined as a set of constraints on properties of the ad hoc net-
work. Constraints on properties of hosts (e.g., battery life), of communication
links (e.g., bandwidth), of agents (e.g., access rights), and of data (e.g., type)
may be used to define a context specification policy. We favor policy specifica-
tions that use constraints on such properties because they offer generality and
flexibility and allow developers to reason at a higher level of abstraction about
the entities within the ad hoc network and the way they contribute to defining
the content of the CSDS.

The context-scoping protocol uses the scoping policy supplied by the appli-
cation programmer to present a subset of the items in the ad hoc network as the
content of the CSDS. In doing so, the protocol builds a context structure over
the ad hoc network, which can then used by other protocols that support the
execution of data structure operations. Certain scenarios call for different ways
of using the context structure. When the environment is highly dynamic and
data structure operations are issued over the context infrequently, the context
structure is built on-demand each time that an operation on the associated data
structure is issued. In situations where the environment is relatively stable and
operations over the context are frequently performed, the context structure is
maintained as the environment changes.

As a final note, implementations that supply agents with tailored contexts are
implemented in a distributed fashion. Agents do not require global knowledge of
the environment to participate in the computation of and to interact with their
tailored context.

4.2 Data Structure Population Protocols

Typically, the insert operation described below is used to populate traditional
data structures:

– insert(X): places the data element X in the data structure according to its
organizational policy.

Rather than allow programmers to insert data directly into a CSDS, the in-
frastructure performs data maintenance on behalf of the application. Thus, the
insert(X) operation is not directly provided to programmers for a particular
data structure in the context-sensitive data structures methodology. Instead,
there are two ways to include data items in an application’s CSDS: indirectly
through context-specification and data element ordering, or directly by injecting
data as a context item into the environment.

First, indirect insertion is used to populate a data structure. An application-
provided context-scoping policy is supplied to the infrastructure in the instanti-
ation of a CSDS. A protocol in the infrastructure for providing tailored contexts
selects the data elements to be contained within the CSDS, and a separate pro-
tocol creates an overlay structure to mimic a local organization of those elements



according to properties of the data structure. Like the context-scoping protocol,
it may be practical in some situations to build the overlay structure on-demand
when an operation is issued, or it may be more effective to maintain the over-
lay structure in the presence of changes. The overlay structure protocols often
utilize several other protocols for data collection and aggregation. For instance,
the implementation of the context-sensitive priority queue uses a protocol that
sorts the items in the scoped context and returns the greatest element.

Second, direct insertion is performed by using an insertion operation provided
on the infrastructure instead of on the context-sensitive data structures. We treat
each data item produced by an application as a generic piece of data that is
provided to the infrastructure via insert in order to supply it to other agents
as context. The semantics of direct data insertion varies, and a suitable option
can be specified by the programmer. We identify three types of direct insertion
operations: local, destination-aware, and property-aware. In local insertions, the
data item is stored locally by the inserting agent. A destination-aware insertion
allows the programmer to specify a desired destination for a data item in terms of
a particular agent or host. The inserted context item will eventually reside at the
specified destination through the use of auto-migration. With auto-migration,
the data item is delivered immediately when the destination is available. If the
destination is unavailable (e.g., because of network partitioning), the data item
is marked for migration and stored locally until it can be delivered. The property-
aware insertion is similar, but allows a more decoupled method of specifying a
recipient. With this type of insertion, a policy restricting the set of potential
destinations is provided as a parameter to the insert operation. All destinations
are evaluated against the criteria. A single destination is non-deterministically
chosen from the set of matching destinations and is used by the infrastructure
in a destination-aware insertion.

To allow agents to protect their data, specialized versions of the direct insert
operations that support access control mechanisms can be used. Access control
parameters are included with an insert operation to specify how the data is made
available at different levels of protection. Only authorized agents are allowed to
access or delete another agent’s data items. The programmer can specify which
agents are authorized using a policy similar to that used for context-scoping.
This form of access control can be supported in part by requiring all agents to
provide credentials in the context definition used to populate the data structure.
These credentials are used by the context-scoping protocols to evaluate the access
control rights against the access control policies of the provider to determine if
the data is included in the context.

All of these insertion styles may affect the context associated with an agent’s
CSDS. If an overlay structure maintained for a particular context-sensitive data
structure is affected by some agent’s insertion operation, the protocol for main-
taining the overlay structure must sense the change in the environment and
accordingly adapt the structure.



4.3 Data Access Protocols

Data access in traditional dynamic set data structures can be generalized by the
set of operations described below:

– get(X): searches the data structure for the item corresponding to the key
X. If successful, the operation returns the corresponding element; otherwise,
it returns null.

– contains(X): searches the data structure for the item corresponding to the
key X. If successful, the operation returns true; otherwise, it returns false.

– getNext(): returns the next data element in the data structure. If the ele-
ment does not exist, null is returned.

– getFirst(): returns the data element located in the first position of the
data structure. If the element does not exist, null is returned.

– iterate(): returns an iterator over the data structure.

These operations do not change the data structure in any way. Thus, protocols
designed to support data access operations simply use the overlay structure built
by the population protocols discussed in the previous subsection. Examining
the set of operations brings up questions about the semantics provided by the
protocols. In some situations, an application’s requirements may be satisified by
weakly consistent results in exchange for more efficient execution of operations.
In other scenarios, a strongly consistent reflection of the environment is required
in the result, regardless of the expense of the distributed transactions needed for
the operation’s execution.

4.4 Data Removal Protocols

Manipulating the data structure by removing elements is a common task, and
is typically achieved through the use of operations such as:

– remove(X): returns and deletes the data element X from the data structure
if it exists and adjusts the data structure if needed. If the element X does
not exist in the data structure, the operation returns null.

– removeNext(): returns and deletes the next data element from the data
structure if it exists and adjusts the data structure if needed. If the element
does not exist, the operation returns null.

– removeFirst(): returns and deletes the data element located in the first
position of the data structure if it exists, and adjusts the data structure;
otherwise, the operation returns null.

Protocols developed to support these removal operations may have different
semantics. We provide two types of removal operations: an individual remove
and a communal remove. The former eliminates a data element from inclusion
only for the issuing agent’s particular CSDS on which the operation was called,
while the latter expunges the data item from inclusion in any CSDS of any agent
by removing the data item from the ad hoc network.



Individual remove operations are useful for collaborative applications that
operate on overlapping contexts, such as the disaster recovery scenario presented
earlier. In this application, once a rescue team member arranges treatment and
transport, the victim is removed from the context-sensitive priority queue. How-
ever, volunteers and ambulance crews still require access to the injury informa-
tion, and so it is not removed from the ad hoc network. To support individual
removal operations, the protocol performs bookkeeping. When a remove is is-
sued, the specified data item is marked as no longer belonging to a particular
CSDS and that information is remembered by the owner as part of the data
element. Choosing to use this protocol in the development of a CSDS, how-
ever, requires careful consideration, as the bookkeeping required can create a
significant amount of overhead.

The more traditional communal remove operation eradicates the specified
element both from the context-sensitive data structure and from the ad hoc
network. This approach also requires careful consideration, since the protocol
essentially deletes another agent’s data. Using the access control approach pre-
viously mentioned, however, allows agents to control how other agents access
their data.

Regardless of choice between individual or communal removal semantics, if
the overlay structure is maintained, the removal operations require its restruc-
turing. The removal of a piece of data is essentially a change in context and
is handled by rebuilding the overlay structure when a data structure operation
is issued over the context, or by the overlay structure maintenance protocol
discussed in subsection ??.

4.5 Implementation Requirements and Issues

As we explore the potential for CSDS development, we make the observation
that with particular data structures, the same portion is regularly accessed. For
instance, priority queues and stacks are frequently accessed at the beginning
positions of the data structures, using operations such as getFirst and pop.
This observation is the motivation behind the concept of on-demand partially
maintained data structures. We believe that improvement upon the performance
of a typical CSDS can be facilitated by relaxing the requirement that the struc-
ture be built and maintained over all the data items in the context. Instead, a
CSDS is initially constructed to consist of only the first n elements, where n is
a parameter given in the instantiation of the data structure. As the elements
are accessed, the structure is further constructed on-demand. The structure is
maintained to n elements in the presence of context changes. The parameter n
is tunable and can be changed to address the application’s need or changes in
the context. Our approach to partially maintained data structures has its roots
in the suspended cons concept described in [?], which was introduced to support
finite storage of infinite objects. Suspended cons is an extension to Lisp that
allows placeholders of expressions to be stored until an operation forces its eval-
uation. Similarly, our partially maintained context-senstitive data structures are
evaluated further only upon demand.



As a final note on supporting the development of context-aware data struc-
tures, it is imperative that we carefully evaluate the requirements and issues
presented, develop protocols in response, and include them in an infrastructure.
The delivered infrastructure should be flexible, allowing the CSDS programmer
to use only needed components. The components should have minimal program-
ming interfaces which are familiar and intuitive. The protocols should perform
in a reasonably efficient manner. Moreover, the CSDS design methodology for
context-aware application development should be put to the test through the
development of applications that use context-sensitive data structures.

5 Related Work

One approach to simplifying context interaction is to treat the collection of
data in the ad hoc network as a database. For instance, the TAG system [?]
was developed to simplify sensor network data collection for programmers by
providing a declarative interface in the form of a simple query language. The
query language is based on SQL, with the main difference being that persistent
queries are supported through the use of an additional clause that allows a
user to specify a duration for periodic evaluation. Further work resulted in the
TinyDB system [?] which employs an acquisitional query processing approach in
which the sensors themselves can assist in intelligent collection of data to reduce
power consumption. While these and other such approaches simplify context
interaction and data collection in dynamic environments, they may not be the
solution to supporting rapid development of multi-agent systems. This kind of
system still requires awareness of the environment; the programmer must have
some knowledge of how the data in the network is structured within the virtual
“database” in order to issue meaningful queries. The application programmer is
also responsible for processing the data obtained from the network using such
queries and organizing it into an appropriate data structure. In addition, though
the specification of a duration allows for periodically evaluated persistent queries,
such an approach does not allow for a more general specification of consistency
between the data residing in the network and the returned results. Finally, the
database approach was intended solely for data collection, and does not lend
data encapsulation as does a data structures approach.

Closer in spirit to our work are those approaches which rely on a data struc-
ture abstraction to support rapid development of context-aware applications. In
fact, a simple example of the context-sensitive data structures concept can be
found in models which utilize a transiently shared tuple space data structure
to support coordination among applications in ad hoc networks, e.g., Lime [?],
Limone [?], and others. Another example can be found in the EgoSpaces [?]
model, which relies on a slightly more sophisticated abstraction to facilitate
agent coordination in ad hoc networks. In this model, an agent’s tailored, asym-
metric context is encapsulated in an abstraction called a view. Agent interaction
occurs through the use of insertion and content-based retrieval operations on the
view. The middleware implementations of these models are strongly tied to a



single data abstraction, e.g., the tuple space in Lime and the view in EgoSpaces.
In contrast, in our work we seek a more general approach in order to provide
programmers with the ability to use a range of context-sensitive versions of
traditional data structures, such as stacks, queues, and trees, allowing the pro-
grammer to choose the most appropriate data structure which best suits the
needs of the context-aware application.

Essential to making our approach viable is the ability to restrict an applica-
tion agent’s context to a manageable subset of the data available in the network.
As previously mentioned, one protocol that allows for declarative specification
and maintenance of context tailored to an agent’s particular needs is the net-
work abstractions protocol [?]. While the network abstractions protocol provides
the ability to define a number of useful contexts, it is not possible to define all
contexts that an application desires. Consider, for instance, a city employee who
wants to monitor water meters distributed throughout the city. The context for
his application could be defined as “all meters until a meter outside the city lim-
its is reached”. Another application might require a context based on temporal
properties. For instance, an application that uses temperature data in the sur-
rounding area to adapt its operation may only want to act upon data readings
that are relatively fresh. To our knowledge, no protocols exist to define these
kinds of contexts. We would like to develop protocols that allow specification of
these and other contexts and to include them in our infrastructure.

6 Discussion

The purpose of the context-sensitive data structures approach is to support rapid
development of context-aware applications. However, programmer productivity
is not our only concern. In the remainder of this section, we discuss how the
CSDS programming methodology and the support system outlined in this paper
meet quality requirements associated with the development of large-scale multi-
agent software systems.

Scalability. Since we consider multi-agent systems that operate in open en-
vironments, the number of agents in the network can grow large. As such, an
agent’s maximal context (which spans the entire network) can include context
information provided by a considerable number of hosts. The result is that a
context-aware agent may be hindered rather than helped in its performance by
the use of context, since the agent becomes consumed by an inordinate amount
of context collection and processing. The context-sensitive data structures ap-
proach considers the need to keep an agent’s context manageable by allowing the
programmer to specify restricted contexts, and to associate a particular context
with a context-sensitive data structure.

Dependability. A common approach to bolstering the dependability of
multi-agent systems that operate in unpredictable environments is to employ the
notion of context-awareness in agent development. Using the context-sensitive
data structures approach simplifies dependable context-aware agent develop-
ment by automating the context management tasks and hiding them from the



agent programmer, presenting instead a familiar interface in the form of data
structures. It follows that programming errors associated with context collection
tasks can be reduced when the context-sensitive data structures methodology is
utilized.

Reusability. The context-sensitive data structures programming methodol-
ogy advocates a style of context-aware agent system development that supports
reusability. Encapsulating all context management tasks in a CSDS eliminates
the need for rewriting context management code across applications—an agent
programmer can instead reuse the CSDS. By allowing a CSDS to be associated
with a particular context specification at instantiation, a CSDS can be reused
for different kinds of contexts. Furthermore, since population and maintenance
of the contents of a CSDS is determined by the context specification provided
in the data structure’s instantiation, agent code can be reused for a different
purpose simply by changing the CSDS’s associated context specification.

While context-sensitive data structures offer many benefits in developing
context-aware multi-agent systems, it remains to be seen how effective their use
can be. Much work lies ahead in the development and evaluation of efficient
protocols for inclusion in the CSDS infrastructure, as well as the development
of a CSDS library.

7 Conclusions

In this paper, we presented a novel abstraction called the context-sensitive data
structure designed to simplify the development of context-aware applications.
A context-sensitive data structure encapsulates data items distributed among a
number of agents within a restricted portion of the large-scale ad hoc network
and provides the programmer with access to the collection of data elements
as if they were local through a well-defined API. The content of the context-
sensitive data structure is fluid; as the context changes, the CSDS is reorganized
to reflect the changes in the state of the environment. To support the use of
context-sensitive data structures as a design methodology, we proposed provid-
ing an infrastructure that encapsulates protocols for restricting the context, for
accessing data elements in the context, and for modifying data elements in the
context. We envision this infrastructure as providing the CSDS developer with
a set of essential tools that can be used to develop a range of context-sensitive
data structures. In this paper we take a first step toward that goal by defining
the context-sensitive data structures model and outlining the requirements and
issues associated with developing a CSDS support infrastructure.
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